Rectified 8-orthoplex


8-orthoplex

Rectified 8-orthoplex

Birectified 8-orthoplex

Trirectified 8-orthoplex

Trirectified 8-cube

Birectified 8-cube

Rectified 8-cube

8-cube
Orthogonal projections in A8 Coxeter plane

In eight-dimensional geometry, a rectified 8-orthoplex is a convex uniform 8-polytope, being a rectification of the regular 8-orthoplex.

There are unique 8 degrees of rectifications, the zeroth being the 8-orthoplex, and the 7th and last being the 8-cube. Vertices of the rectified 8-orthoplex are located at the edge-centers of the 8-orthoplex. Vertices of the birectified 8-orthoplex are located in the triangular face centers of the 8-orthoplex. Vertices of the trirectified 8-orthoplex are located in the tetrahedral cell centers of the 8-orthoplex.

Contents

Rectified 8-orthoplex

Rectified octacross
Type uniform 8-polytope
Schläfli symbol t1{3,3,3,3,3,3,4}
Coxeter-Dynkin diagrams
7-faces 272
6-faces 3072
5-faces 8960
4-faces 12544
Cells 10080
Faces 4928
Edges 1344
Vertices 112
Vertex figure 6-orthoplex prism
Petrie polygon hexakaidecagon
Coxeter groups C8, [4,36]
D8, [35,1,1]
Properties convex

The rectified 8-orthoplex has 112 vertices. These represent the root vectors of the simple Lie group D8. When combined with the 16 vertices of the 8-orthoplex, these vertices represent the 128 root vectors of the B8 and C8 simple Lie groups.

Related polytopes

The rectified octacross is the vertex figure for the demiocteractic honeycomb.

or

Alternate names

Construction

There are two Coxeter groups associated with the rectified octacross, one with the C8 or [4,36] Coxeter group, and a lower symmetry with two copies of heptcross facets, alternating, with the D8 or [35,1,1] Coxeter group.

Images

orthographic projections
B8 B7
[16] [14]
B6 B5
[12] [10]
B4 B3 B2
[8] [6] [4]
A7 A5 A3
[8] [6] [4]

Cartesian coordinates

Cartesian coordinates for the vertices of a rectified octacross, centered at the origin, edge length \sqrt{2} are all permutations of:

(±1,±1,0,0,0,0,0,0)

Birectified 8-orthoplex

Birectified 8-orthoplex
Type uniform 8-polytope
Schläfli symbol t2{3,3,3,3,3,3,4}
Coxeter-Dynkin diagrams
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure {3,3,3,4}x{3}
Coxeter groups C8, [3,3,3,3,3,3,4]
D8, [35,1,1]
Properties convex

Alternate names

Images

orthographic projections
B8 B7
[16] [14]
B6 B5
[12] [10]
B4 B3 B2
[8] [6] [4]
A7 A5 A3
[8] [6] [4]

Trirectified 8-orthoplex

Trirectified octacross
Type uniform 8-polytope
Schläfli symbol t3{3,3,3,3,3,3,4}
Coxeter-Dynkin diagrams
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure {3,3,4}x{3,3}
Coxeter groups C8, [3,3,3,3,3,3,4]
D8, [35,1,1]
Properties convex

Alternate names

Images

orthographic projections
B8 B7
[16] [14]
B6 B5
[12] [10]
B4 B3 B2
[8] [6] [4]
A7 A5 A3
[8] [6] [4]

Notes

  1. ^ Klitzing, (o3x3o3o3o3o3o4o - rek)
  2. ^ Klitzing, (o3o3x3o3o3o3o4o - bark)
  3. ^ Klitzing, (o3o3o3x3o3o3o4o - tark)

References

External links